Overview of optimization

Yifan Sun

Preliminary

Purpose

A friendly introduction to optimization.

Disclaimer

I'm basically pulling all of this out of [1], which is a (freely available) canonical book on optimziation
(authors are profs at Stanford and UCLA). Specifically, I'm pulling memorable examples from Chapters
1,4, and 9. Some of the linear algebra stuff I also pulled from [2], which is also a book written by a
UCLA prof. When I say “pulled”, T mean word for word, so please don’t distribute this because I'm
gonna be in such copyright hell if that happens. £ 5 990 a 9!(\4 ,@4/ actv ‘;‘lﬂl? = e
Big id I el b8 TN B T dat
e Hcay Cowt W:v) portFolip cint "~} abt
There are two big ideas I really want to get across in this document. “ * wof
One is the idea that the problem is as important, if not more so, than the solution. A big part of
optimization theory is recognizing that most problems are essentially the same, and if you can frame &- TH AN i<
your problem in a standardized way, you can easily recognize the class of solutions one can use to solve You,

it. ;
The other is that matrices and vectors can be treated like scalars, but in completely nonintuitive Sags fhe

ways. Throughout the document I will try to draw connections between the two regimes. One should rf)i © 6,&]

keep in mind that these connections are purely “qualitiative, not quantitative”; they are not rigorous

definitions, just ways of thinking. i [edcnn
J 4 & k7 i ey am eyt ond,

Software

When doing optimization problems, I generally use cvx (http://cvxr.com/cvx/), which is a plugin for
MATLAB. That choice is probably heavily influenced by the fact that Stephen Boyd sort of pioneered
that, but actually it’s pretty good software too.

Notation

One of the symptoms of rabbit-holing is I develop a lot of idiosyncratic notation that I can’t live without,
but sometimes is really confusing for others. This part isn’t really important, but will hopefully eliminate
confusion wherever possible.

e R refers to the space of real numbers.
e R™ refers to the space of vectors of length n, whose elements are real.

e R™*™ refers to the space of matrices with m rows and n columns, whose elements are real.

In general, if and y are vectors, the notation z(=, <, <)y means z;(=, <, <)y; for each element
Ti,Yi in Z,Y-

e In general, if A and B are matrices, the notation A = B means each element in A is equal to that
element in B, and vice versa.

(e_\j\@d \\,Q/ i e The-notation A(>,>)B does not mean element-by-element inequality. Rather, this means that
5 d[/: ‘ (A — B)[>,>)0, where X (>, >)0 means the eigenvalues of X are strictly positive or nonnegative, ﬁ(/é
e e raspectively. In many ways, this is the better analogy between matrices and scalars than element- L
X9 by-element comparison. For example, X has a “square root” X = RTR if and only if X > 0 and is /
AV :
4 symmetric. X has an inverse if and only if X # 0, that is, X has no zero eigenvalues. Otherwise,
’\(3 : the result is very much like dividing by 0. Cigl‘e’ 5
7%,) e f: A — B is a function that takes an input from the space A and outputs to the space B. WJ
o X :
/\C“\’a{, f e V,d means for all, and there exists, respectively. AW e e e,
s :
ad e |z| for a scalar = means absolute value. ||z|| for a vector £ means norm. Specifically, the 2-norm is
)_I g
B 6”‘ acyY of (SWV\ of zrvarca'
du C/,r?j HmH2 it ng)L]v“ 5/)
mp | 5
Ne
Y mia &y and the 1-norm is
|| == Z |2]. Sum o€ elamenls
i
Problem statement
Every (numerically computable) optimization problem can be stated in the following form:
min f(z) G S
a " ao 5 5)
subject to g(z) <0 v o0 i\qu,\‘oﬁ‘f N,\P(x‘ \3«%’7
hlz).=0 E,\rms e Lﬁ\g})"’ »
where f(x) is referred to as the objective function (or a cost fyhction), and g(z) and h(z) are the
constraints. can in general be a scalar, vector, or matrix. Note that to change this to a maximization
problem, we simply change the sign on f(z). The set of points {z : g(z) < 0,h(z) = 0} is referred
to as the feasible set. If X is empty, then the problem is not feasible.
a4 L\ Example: Consider you are manufacturing electronic parts. You would like to maximize your
¥ - | yield. So, you frame your yield based on parameters (number of machines, quality of machines,
cont available quantity, etc.) This becomes the objective function. But most companies cannot operate
unconstrained; there are cost constraints, and quality specifications. Some of these constraints might ’
be ineqaulities (cost < budget), others might be equality (clock rate = 1GHz). L geroe
A putrbur!

Although these few lines () look very simple and sparse, they are in fact very general! /Basically
anything you would optimize with a computer (sorry romantic relationships don’t apply)('you can frame
in this form. In fact, this class of problems is actually far too difficult to solve. Without knowing more,
the only solution that will work for every possible such problem would be a brute force search of the
constraint space. That sucks. Ye§,

We need to narrow our space a little. Rather than consider every possible optimization problem, let’s
start with the problems we know how to solve, and work our way up. For now, we will not consider

constraints. f)\;() €é§\1+° -Fv”o"‘i xﬁ@m} ,fwjli be an awesome Fm(:‘

2

| vndestand et
LoveX g ans | bet I

, \\3 /,/\o‘}’ sure hogo Hain
s~ n stz ion -4\—\{11 il i
i A o it

Xt
1. f(x) is continuous, differentiable, and convex |

o

To be precise, we say a set X is convex if Vz1,z2 € X, the convex c«'f)mbinationraml +(1-0)zz € X, =

where 0 < 6 <~l A line, the inside of a circle, and the inside of any regular polygon, for example, ,\W i
are convex. The inside of a Pacman shape is not convex, since the mouth part contains points thatq& st M’WJ ias"}’
are not in the set, but can be expressed as a convex combination of the lower lip and forechead. - o Jt f

We say a function f(z) is convex if Vz1, 22, f(0z1 + (1 —6)z2) < 6 j (mmn other words,

convex functions are like bowls; they always dip below, never above:- -Convex’ functions are nice '
because if you find a local minimum, you know that’s the global minimum. ! @" ‘S’ @\)‘l’

Example: As a refresher, let’s take a look back at some calculus. Consider the function /mmm--\\

fl@):R—=R <‘ﬁ L
f(@) = (22 —5) = 4y’ -20% + 35 \7@

We wish to find z such that f(z) is minimized. The function is everywhere continuous and
differentiable, and the first and second derivatives are:

filz) = 8z—20
) = 8

By finding = where f’(x) = 0, we can determine all the stable points of f(z), i.e. where f(z)
could be a minimum, maximum, or saddle point. These points are the local extrema of f(x). lC fo =
Some algebra, tells us the only such point is z = 5/2. (/t le g
Additionally, since f”'(z) =8 > 0,Vz, then the function is convex everywhere. (f(z) is like a_,,/ 1P ° tf’ﬂi:ﬁ?‘m
bowl.) This tells us that f(z) only has one minimum, and no maximum or saddle points. So -
we know that f(z) is minimized if z = 5/2. '
e
What if, rather than having z as a scalar, z was instead a vector, or a matrix? Then we would MC""t
expect similar things can be done with the “derivatives” of f(z), using the gradient (Vf(z)) -+~
and h}(‘a‘ssian (V2f(z)). More on this later. :;'\L] | drusy Yoy«

\
a
o
-

/ /> In general, Such-problems can beFolved-anatytieally, but rarely do they occur in practice. Still,
. % (7’ 5 this example gives us an idea of what to expect with convex functions, which is that by searching

/%l%é—r,, for local minima, we are assured to find global minima.
9 2. f(z) is continuous and convex, but not differentiable.
e 2
Example: Consider f(z): R — R (isval
]ear(\—b\
)= |T 2
,f\“ f(z) = |=| M,,\)
= The minimum of this function is z = 0, but since the function is not differentiable at z = 0,
g there’s really no nice analytic way of arriving at that. But intuitively, this shouldn’t be so
< hard to find. Consider the following algorithm:
\ > 4D
= 1This concept is the foundation behind convex optlmlzatlon If you did not know a function was convex, you must
< assume that at best your algorithm will require O(e~™) complexl , where € is your tolerance and n is the number of points
N 5 ~_ in your sa?ﬂ; space. If, however, your problemys convex, your complexﬂy might be polynomial, linear, or constant.
() [
N %// i s MM

i NIy
bosnl
\m\\FLL : P,%{,) /@
bt
e &
punred

e Pick any starting point 7o, and find f’(zo). In this example, this derivative is just

f' (o) :{

If we are unlucky and pick zo = 0, then return not-a-number and pick another starting
point. any oy o ,ﬂqu i }WNV JHato M;SW\' be Hwe answe"?

e Pick a starting step size, AZy.

—
1

if g <0
if zg >0

e Fori=0,...,if f'(z;) > 0, then z; 11 = z;— Az;, and if f'(z;) <0, then z; 1 = T;+ Ax;.
Additionally, at each step, Az;p1 = $Az;. u il doo 3
1 2
e Continue until Az; is within your tolerance. \'c \i ?go r ?Scu—’* A
b o

This method is called bisection, and if you can@ge to overstep in the first step) then this
method will have linear convergence. (It’s a geometric sequence!) Note, however, that this is
nowhere near as appealing as in the previous example, where we found the exact minimum in
one step.

Example: Consider the problem of minimizing the maximum of a set of convex functions:

g(z) = m?xfi(m),i 1w

Each function is continuous and differentiable, but where they intersect, it might be pointy (i.e.
not differentible). For example, Figure 1. You can prove that such a combination of convex
functions is guaranteed to be convex (by using the definition of a convex function). This is
actually more of what realistic problems might look like, and bisection can also be used here
to find the minimum.

£,00=0c-1/2%2
e
———£500=-10 cos()

fea] g(}()

m\a, \
‘H’\-’L olfpi‘)af‘ﬁr)/\)
ol

Se2

10 1 L .
4

Figure 1: Example of three functions that are convex over the domain —m < z < .

3. f(z) is convex, but not continuous nor differentiable.

There’s a lot of literature on how to solve these types of problems (search subgradient methods).
I'm still learning about this, so I won’t go here. Suffice to say it’s a solved problem, so if you ever
run into a problem that falls in this category, rejoice, for ye shall have solutions. \ /

Q

4. f(x) is continuous, but is not differentiable nor convex.

As mentioned before, if you run into this catagory, you are in general out of luck; in general, you're b hp S
stuck sampling and checking to see if you hit the minimum. If you know a lot about the problem © 31
structure, you might be clever about how you sample, but that’s a whole other topic.

Neato! Hopefully by now you’ve gotten to a point where you’re thinking, yeah I see how my current
research problem might fit into one of these categories, but man, this is such an oversimplification! Real
problems are rarely scalar functions, with possibly billions of variables and very unintuitive structure.
Not to mention, what happens if you factor noise into the picture? If you really want to know the answer
to these questions, you should read through the references and also play around with some optimization
software (I use cvxopt because my adviser wrote that, but there are plenty good ones available on
the interwebs). In these next sections I will just go through some very standard problems and known
solutions, and a few examples that tickle me greatly.

Some types of convex problems

Least squares problem

Everybody remembers the linear regression problem from high school science class, where you’re given
a set of data, and told to fit a line to it using excel, or a calculator. If you are fancy, you might even
have tried a polynomial fit. Well, what if T told you that these kind of fitting problems fall into a general
(and easily solvable) class of problems called least squares, and the solution is really easy to calculate?

Example: 1 have a set of data, y1,...,y, taken at times t1,...,%¢,, and I wish to find some linear
correlation, that is, o, 8 such that y; =~ at; + 8. To make notation easier, I will define the vector

y,t € R™ containing these datapoints as elements. I’ll define z = {Z] and a matrix A = [t, 1] € R?*2,

s calld

where 1 is a vector with all elements 1. Then what we want is

] S
0(1"5«”«&*5 WL

y = Az

Another way to think about it is to deﬁnc residuai Ti =y —odi— ,6 and the vector r containing

A
ol bl v o
man|Tz| D E)(\1\9_, o> “ 7
€ i W S\?ﬁ’/ Wt W

but this in general is very hard. However, it turns out that the solution to
/ & sl ot
7 e ¥ st T e
mingdell? il oo WipiStl ek .
x e LA { %
; YbasbilS 4-mvah>d§ ol bl
can be derived analytically. (You can intuitively think of this as remembering that a differentiable
function has an analytic minimum, but if it isn’t differentiable then you have to use a method like
bisection to find it, which requires more steps.) This is why this type of problem is called least
squares, because you are minimizing the squared error rather than the actual error. There are
advantages and disadvantages to this, which I will touch later when discussing regularization.

0o L »
v
gl E AL shoa?
\\; YV bt o e Sty
A \ ' V’W 2] 6‘1
A & G 5@'3’ 6""4 am UL"";‘
\ e, o ¢“1“7 gl
e T RS Rt T g
The least squares problem endeavors to solve | }AW"M%{ jp =0 l’”mr{ .
/ g 5’«* e ;V! o
% Tﬂ "
minllrl = Iy~ 42l = (-~ A}y —) | pom S

where A has more rows than columns. (In the above example, A has n rows and 2 columns.) 2

The solution to the least squares problem can be found using some fancy linear algebra to be the
set of x such that AT Az = ATh. (In general, unless A has full column rank, many such solutions
exist.) You can pretty much find a proof of this in any grad level linear algebra textbook, but it might
be interesting to derive this result in a different way. Remember our toy example with the convex,
continuous, differentiable function, in which we found the minimum by just setting the derivative to 0
and assuring the function was convex? Let’s try that same trick here. First, we find the gradient (first
derivative) and hessian (second derivative):

Vi) = V((y—Az)T(y— Az)) =V(yTy — 20T Az + xT AT Az) = 24Ty + 24T Az
VA F () s V(245 y 424 Ax) 24T A

Note that in general, if f : R® — R, then the gradient is a vector and the hessian is a matrix.

It turns out that any matrix written in the form AT A is positive semidefinite (has no negative
eigenvalues), and you can prove that if V2f(x) > 0 then f(z) is convex. So we can do the same trick,
and find z the minimum of f(z) if —24y + 24T Az = 0 = AT Az = ATy. That’s pretty cool!

Linear programs

This is a funny word that really confused me when I first got to UCLA, but apparently it’s a pretty
common term to describe a very common (but simple) class of problems. Basically, linear programs can
be described as

min Iz
x
st Az =b
Gz <

for vectors ¢, z, h and matrices A, G.

Example: Consider the optimal diet plan. Your weight depends on some linear combination of
caloric intake, exercise, stress levels (for example). The importance of each factor depends on
parameters ¢ = [e1,. .., ¢,]T and how much you do them is in the variables z = [z1,...,2,]7. So
then you want to minimize your weight:

minc’z
T
This problem is clearly unconstrained. The solution will be z; = oo if ¢; < 0 (the factor
decreases your weight) and x; = —oo if ¢; > 0 (if that factor increases your weight). Obviously you
can’t exercise infinitly often and you can’t never eat, so this model is really silly. You need to add
some constraints, like having a healthy level of food, and not overworking. You can frame those as
linear constraints, and voila, you have a linear program to solve.

2If A had more columns Ehd rows, this would become a sensing problem, rather than a data fitting problem—google
compressive sensing for more info:

Example: This is a problem I literally ripped from the Convex Optimization textbook that I really
liked, mostly because it used funny shapes. First, a few terms:

An n-ball is a set of points B(ze,r) = {z. + ul||u|lz < 7}, where z. and r are the center and
radii of the ball, respectively. Here, x. and u are vectors, and r is a scalar. For n = 1,2, 3, thisis a
line segment, filled circle, and filled sphere, respectively. If n > 3, we might call it a hypersphere.

Similarily, a polyhedron in n dimensional space with m sides can be described as P(4,b) = {z €
R”|ag’m < b;,i = 1,...,m}. Here, z is a vector with n elements, b is a vector with m elements
(b1,-..,by) and A is a matrix with n columns and m rows, where a; is the vector describing the ith
column of A. You can understand why this is true by first observing that the set {x € R*|alz < b;}
for a specific ¢ is a half-space, (it’s a partition of the n dimensional space). A polygon is simply an
intersection of halfspaces. Figure 2 tries to illustrate this for n = 2.

The question is to find the largest ball to fit inside an arbitrary polygon. This, it turns out, is a
linear program:

max . ¢
riLi
subject to afz.+r(afa;) <b,i=1,...,m
r>0

e TR R 1 e T) a 02 04 06 08 1

Figure 2: Example of partitions in 2-dimenstional space, creating halfspaces. If you take the intersection
of a set of halfspaces, you will get a polygon.

Before getting to how to solve linear programs, I’ll first do a detour into regularization, which is kind
of a funky topic.

30ne application for this type of problem is in communications. Imagine there are many cell phone companies servicing
a region, and each company uses its own tower. The region is cut up into polygons, and each company has to decide
where to put the cell tower such that there is maximum coverage, but the signal does not enter any other region (a hard

boundary).

Regularization

Example: In this example, we’ll attempt to fit a pure square wave to a noisy signal. (Scroll down
to Figure 3 for a peak.) The idea here is simple: I have a signal, z;, and I want to find z; such
that z; &~ 2z; but the interpolation of the points in z; is smooth. One way we might do this is to
minimize both criteria jointly. So, like we did in the least squares example, we're going to fit a line
by reducing the squared error, i.e.:

min ||z — 2|2 +7||Dz||2
where
S 0 0 0
0 -1 1 0 0 0
B :
0 0 0 =1 "1 "0
0 0 .0 Q. =1,
and therefore
Lo~ Tg
T3 — T2
Pz =
TN —ITN-1

This kind of works, except that whenever the signal has sharp edges, the 2-norm approximation
gets lazy, and lops it off. It’s well known in optimization theory that if you replace this with 1-norm
regularization, that is,

min ||z —zl|z +7/|Dz|ly

then the edges will fit much better. (The intuition behind this is that 2% grows a lot faster than
||, so one might say that the 1-norm is more tolerant toward outliers.) You can see how much
better the fit is in Figure 3.

At this point I will shift gears from optimization problems to methods of solving these problems. Least
squares and linear programs are like the addition and subtraction of optimization. There are many
different, types of problems (data fitting, scheduling, cost-benefit analysis) that fall into these categories.
But these problems really only scratch the surface of general convex problems, which in itself is a very
special type of problem. If you want to learn more about them, I recommend watching some lectures by
Stephen Boyd (available on youtube), or checking out the textbook in the references.

Methods for solving convex problems

Gradient Descent

The idea behind gradient descent is simple. If you're standing on a mountainside and you want to get
to the valley, and you know the area you’re standing in is bowl-shaped, then you keep stepping in the
most downward direction possible until you get to where it feels flat. Now imagine your cost function

2r o= wm |3l regularization

[l regularization

-+ Corrupted signal

Figure 3: Result of regularization for data fitting. For 2-norm, I used v = 10. For 1-norm, I used v = 1.

is the height of the mountain (f(z)), and the minimization problem is to find the valley = : V f(z) = 0.
Then the gradient descent algorithm is:

1. Pick a starting point within the feasible set xo.
2. For i =0,..., evaluate the cost f(z;) and the gradient V f(z;).
3. The gradient descent step direction is

Az =N

and the update step is therefore

Tnt1 = Tn +1AZx

where t is the step size. *

In general, gradient descent is considered the most straightforward method, but its convergence is usually
deemed too slow. The following example will try to illustrate this:

Example: Consider the optimization problem:
: 1
min f(z,y) = 5 +ay’)
We can analytically see that the minimum is (z,y) = (0,0). But, to get an idea of how gradient

descent converges, let’s try and see how fast we arrive at this answer numerically.
‘We have

ay 16

Vi) = | o] = V16 = o

4Determining the optimal step size is an art within itself. If the step size is too big, the method will become unstable
(i.e. a ball bouncing inside a bowl so hard it bounces out). If the step size is too small, convergence is too slow. For now,
we assume that the step size is just right; for details, see references.

for z=

If we run through a few iterations, we see

£ nNe -
AEF V% 0T DY 1o
N A .
e 0 1—ta %0

Tk 3 (1 = t)k:l}o
7 |:yk:| & [(1—at)kyo]

In general, ¢ < 1, so z; — 0, and the error is bounded above by a geometrically decaying
sequence. If t < (2/a), the same can be said for y5. However, what happens if « is very large? Then
we are forced to make ¢ very small in order to assure stability.

Figure 4 shows the trajectory of a point trying to get to the minimum. The black like is the
gradient descent method, and as you can see, the trajectory is very indirect; it heavily favors steps
in the y direction, and requires a small ¢ not to overstep.

Given that we don’t know initially what kind of problem we’ll have (i.e. what « is) ahead of time,
there’s really nothing better we can do than take the convergence hit. But what if we did know?
‘What if we could sense the system’s structure before going into the optimization part, and could
estimate a? Then we might try to fix our step direction so that, rather than taking steps heavily
skewed toward the y direction, we actually went toward the center. For this type of problem, it is
known that the correction factor should be

Az = —P IV f(x)

where P describes the ellipsoid. In this case,

A8 Ly R
e

The red line shows the trajectory of the corrected step (also known as the steepest descent step).
Note that there are no dots; it converges in one step, with ¢ = 1.

Newton’s method

As we see how the gradient descent direction can be so easily corrected, we are motivated to develop this
next method, is a much more general approach toward quadratic approximation. The intuition here is
that gradient descent is like a 1st order Taylor approximation to where the flat part of the valley is, and
Newton’s method is a 2nd order approximation. The derivation is as follows:

Vf(z+ Az) = Vf(z) + V2f(z)Az + O(Az?)

which is just Taylor’s theorem applied to a function g(z) = Vf(z). As we noted before, the minimum
of a function occurs when the derivative is zero, so if we take a step Az, we want our location z + Az
to be such that V f(z + Az) = 0. So the Newton step is:

Az = —(V?f(2)) "'V (x)

10

Figure 4: Gradient descent (black) and steepest descent (red) for o = 10.

Note that, in the example for gradient descent, Newton’s method also converges in one step. In fact,
in general, if the problem is convex and follows certain parameters (nearly quadratic) it can be proven
that if the method converges at all, it will converge in 50 steps or less. However, the tradeoff is that at
each step, you need to evaluate the inverse of a Hessian, which is extremely nontrivial.

Logarithmic barrier

As one lasting thought, T’ll leave you with one method on how to deal with constraints. Up until now,
I've mostly focused on solving the unconstrained problem ,e.g. in (), there is no g(z) or h(z). I will just
briefly mention one way in which inequality constraints g(z) < 0 can be incorporated into the objective
function, using the logarithmic barrier function.

Consider the problem

min. fi(z)
subject to g(z) < 0.

If we remember some high school math, we recall that log(z) is only defined for positive values of z,
and it gets really close to —oo as z — 0. We are going to exploit this by basically building a “wall” on
our objective function, making the objective function undefined if g(z) > 0 and the cost very very large
as £ — g~ +(0). We do this as follows:

f(@) = f(z) — ylog(g(=))

Example: Figure 5 shows the log barrier function acting on the objective f(z) = z? and the
constraint z > 2. Note that as x gets really close to 2, the cost shoots up. The parameter v tunes
how much we actually modify the objective function; if is big, then the steps taken are smoother,
but less accurate. If 7 is really small, then the barrier shoots up very suddenly, and there’s a high
chance that you actually step out of the feasible region, but the objective function is well-preserved.
In general, you would have 7 change dynamically, starting with something big, and as you get closer
to your minimum point, tune it up for better accuracy.

11

00~y log(-2)
70r

B0 | 1 =
! W e
e v=1
a0} | e
I
1
40 |
i]
30_
i
20 i / =
10 :.:\ ‘-_:.r‘{:/':' it
0\ . / L L . . .)

Figure 5: Log-barrier for the original objective function f(x) = 22 and the constrant z > 2.

Conclusion

Well, that hopefully was a fun dive into some introductory optimization. I claim again that no original
thought went into making this document, except that the topics I picked were the ones that stuck with
me the deepest. This is in no means an exhaustive look; optimization is a very wide field, and even the
stuff we do at UCLA is much wider than this, and goes beyond my wildest imaginations.

If you want a deeper look at this stuff, the course notes and homeworks are freely available here
(http://www.ee.ucla.edu/ee236b/ee236b.html) as well as the book (in the references). Additionally,
Stephen Boyd posts all his Stanford lectures on YouTube, in which he explains this stuff in more depth.

Hope that was enjoyable!

References

[1] S. Boyd, L. Vandenberghe Convex Optimization. Cambridge University Press, 2004. Available at
http://www.stanford.edu/ boyd/cvxbook/

[2] A. Laub, Matrix Analysis for Scientists and Engineers. Society for Industrial and Applied Mathe-
matics, 2005.

12

