The difference between
FOSS and Academia

EDU —— 2

. .
| v
IR ¢
AN AN
[\
|]

- -
\
/
\
/ - T

Lo

N

The Dreyfus Model

5.

> Wb

Novice

Advanced beginner
Competent
Proficient

Expert

See the Wikipedia article: “Dreyfus model of
skill acquisition” or http://bit.ly/docs-fable
for more information.

Your first 5 minutes...

1.

Where are the people? What are they
talking about, and how? What's the
project's mission/goals?

What's the user base like? Are they
being supported? By whom? Do
developers interact with them?

Where's the code? What's it written
in? What does dev activity look like?
Release cycle? Commit process?

How is this licensed? What businesses
and/or other projects are or could be
part of the ecosystem?

How do I set up an instance? Is this
something I'd like to use myself?

A FOSS project is like...

An ocean — an ecosystem that can be
nurtured and harvested, fished-from,
given-back-to, harmed and healed,
shaped and researched, played-in and
dived-into on many different levels.

A farmer's market — a bazaar of many
roles — farmer, chef, butcher, baker,
procurer, consumer, coordinator.

A lab lounge or project incubator — a
place of shared discovery driven by
an overarching rhythm and common
practice, with fascinating collisions
between structured projects and
accidental learning amidst the
coming-and-going of individuals.

What else?

Want to learn more?

Open source cultural principles:
http://theopensourceway.org

Applying open source to the
world: http://opensource.com

Our workshops for faculty:
http://communityleadershipteam.
org/posse (Next: July 23-24, 2011
in Raleigh, NC)

Our open content curriculum:
http://bit.ly/posse-curriculum

Our community of practice:
http://teachingopensource.org

Everything from this talk:
http://bit.lyv/ccscne-2011-fieldtrip

This brochure is licensed CC-BY-SA.

Learning objectives
1. Be comfortable lurking in a FOSS

community, and get a high enough
signal-to-noise ratio to be useful
for your teaching in 1-3 years.
When you see people do FOSS
stuff or hear them talking about it,
you'll be able to follow the
conversation.

We're not going to get you to the
point where you could contribute
or guide students - that takes
more time than we have today.
But you'll know where to ask
about diving in, when & why
you'd want to, and how to let us
overhear your thoughts.

Be able to pitch a FOSS
community on why your class of
newcomers will help them.

Phrases you'll hear often

Productively lost.
Fail faster.
“Oh ! 7

Who are we, anyway?

Mel Chua - Community Leadership
Team, Red Hat (mel@redhat.com)

Sebastian Dziallas - Release
Engineering, Fedora Project
(sdz@fedoraproject.org)

E) a Red Hat community service

http://bit.ly/ccscne-2011-fieldtrip
mailto:sdz@fedoraproject.org
http://communityleadershipteam.org/posse
http://communityleadershipteam.org/posse
http://teachingopensource.org/
http://bit.ly/posse-curriculum
http://opensource.com/
http://theopensourceway.org/

FOSS cultural principles

1.

10.

11.
12.

Default to open. Always ask how you
can be more radically transparent —
what exactly are you afraid of? Could
you explain the situation to a friend?
Then it's probably not that bad.

It's not what you know, it's what you
want to learn. (Start now — you can.)

Pay it forward; document in exchange
for lessons. This is a great way to
start talking to people, especially if
you're shy (we are.)

Release early, release often.

Show me the code. (Open source is a
do-ocracy; those who do a task
decide how it gets done.)

Given enough eyeballs, all bugs are
shallow. (Also known as Linus's Law)

If it's not public and reproducible, it
doesn't count.

Begin with the finishing touches.
Don't reinvent the wheel - find
something that's 85% of the way
there and finish it. (Allow people to
use your work for their finishing
touches — this is where open licensing
and open formats come in handy.)

Plan to improvise. Life is a series of
pleasant surprises.

In general, it's better to communicate
the wundone than to do the
uncommunicated.

Push to upstream.

It takes one yes to win. (Keep going.)

For more, see http://theopensourceway.org.

Open source practices

1.
2.

w

4.

Your first 15 minutes in a project
Release cycles
* Development begins
» Feature acceptance & freeze
* Alpha freeze & release
» Feature completion
* Beta freeze & release
* Final freeze & release
* Celebrate!
Proposing a feature

Version control and upstreaming

TEST
PUSH
PULL\ (\ K

© N o v

TINKER COMMIT

Tickets and ticket trackers
Marketing & buzz-building
Licensing & Business

Working with other project teams
* Infrastructure/Sysadmin

* Documentation

* Design/Art

* Testing/QA

* Marketing/News

* Ambassadors/Events

* Translation/Internationalization

Packaging and distribution

Commonly used tools

1. Realtime communication: IRC

2. Longer-term documentation: Wiki
(we will show Mediawiki)

3. Asynchronous updates: Mailing lists
(we will show Mailman)

4. Shared thoughtstreams: Blogs and
Planet aggregators

5. To-do lists: Ticket trackers (we will
show Trac; Bugzilla is common too)

6. Workspaces: Version control (we will
discuss git; svn is common too)

Uncommonly used tools

1. Realtime text-editing: Etherpad

2. Custom Linux distributions: Remixes
3. Thumbdrives: liveusb-creator

Look awesome: Design Suite

Be a polyglot: Transifex

Automatic note-taking: meetbot

Get local: LUGs and meetups

Get together: conferences, hackfests

© ® N o ok

Find beginner bugs: OpenHatch
10. Ask for help: people

We wish we'd known...

Mel: That I was good enough. I spent 6 years
trying to “get ready” to contribute.

Sebastian: That talk is cheap and doing stuff
is what really matters.

	Learning objectives

